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Droplet spreading on heterogeneous substrates using molecular dynamics
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Using molecular dynamics, it is shown that the equilibrium contact angle of a sessile drop placed on a
heterogeneous substrate follows Cassie’s law@Discuss. Faraday Soc.57, 5041 ~1952!#. The dynamics of the
associated spreading is analyzed with the molecular kinetic theory. We show that the corresponding molecular
parameters vary highly nonlinearly with the relative concentration of the heterogeneities. A model to explain
this behavior is proposed. It is predicted that small quantities of wettable heterogeneities on a nonwettable
substrate will change the spreading dynamics drastically.@S1063-651X~99!06101-2#

PACS number~s!: 68.10.Cr, 61.20.Ja, 68.10.Gw
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I. INTRODUCTION

Spreading and wetting are very active research subje
Many of the associated technological processes have
based on the well known Young equation. This equation
scribes how a surface liquidL, in coexistence with its vapo
phaseV, will equilibrate on a solid wallW, according to the
equation

gLV cosu5gVW2gLW , ~1!

where theg i j denote the different surface tensions charac
izing the three pairs of media andu is the contact angle
defined as usual. As already pointed out in several publ
tions @1–3#, the problem with this equation is that it refers
perfectly flat and homogeneous substrates. Such cases d
exist in practice. There is therefore a need to study the
lidity of this equation with realistic substrates. It is know
that Young’s equation may be replaced by Cassie’s law@4# if
macroscopical, chemical heterogeneities are present:

gLV cosu5c~gVW2gLW!A1~12c!~gVW2gLW!B , ~2!

wherec represents the concentration of the speciesA and 1
2c is the concentration of the speciesB. This relation refers
to equilibrium properties of wall tensions. It is certainly co
rect for macroscopic heterogeneities for which the additiv
of the associated free energies should hold but is ques
able for microscopic heterogeneities. Moreover, it is n
obvious that such an equilibrium can indeed be obser
since, due to the metastable configurations, the time nee
to reach equilibrium can be very large. It is, however, e
pected, on an experimental and also on a numerical basis@5#,
that if the heterogeneities are not too important, a drop
on a substrate should spread from its initial configuration
reach its equilibrium shape. Many experimental works ha
addressed this problem in the past@14#. It is, however, very
difficult to have good control of the size and distribution
heterogeneities. Whether or not Cassie’s law remains v
for microscopic heterogeneities is still an open questi
Moreover, the dynamic process of spreading is also a v
interesting problem in itself. Several theories have been p
posed~see@6–8# for an overview!, but all these models as
sume perfectly flat and homogeneous substrates.
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It is therefore interesting to use molecular dynamics~MD!
to study the spreading of sessile drops on well defined
croscopically heterogeneous substrates. This work com
ments a previous analysis developed for lattice gas mode
two dimensions@9#. Moreover, in@10# we already showed
that MD techniques can be used to describe wetting on
form substrates. This allowed us in particular to validate o
of these dynamical theories@6–8# at the microscopical scale

II. MODEL

Let us now present the liquid drop and the solid at t
atomistic scale. For all the atoms considered, we appl
standard Lennard-Jones interaction of the form

Ui j ~r !54eF S s

r D 6

2S s

r D 12G5
Ci j

r 6 2
Di j

r 12 , ~3!

where r denotes the distance between any pairs of atomi
and j, s is the characteristic radius of the atoms, ande is the
strength of the associated potential. The parametersCi j and
Di j are, for simplicity, chosen constant for each species
refer thus to the fluid/fluid~ff !, fluid/solid ~fs!, and solid/
solid ~ss! interactions. For computational convenience, t
tail of the Lennard-Jones potentials are cut off atr c52.5 in
reduced units. This means that we take into account o
short-range interactions. To mimic as much as possible
experimental conditions, we consider here chainlike m
ecules instead of overly simple single atoms. This cho
reduces considerably the evaporation into vacuum and th
fore improves the efficiency of the simulation. In practic
we incorporate a confining potential

Uconf~r !5r 6 ~4!

for adjoining atoms belonging to a given chain. The powe
is chosen here for computational convenience. The soli
modeled by two layers of atoms. These atoms interact via
Lennard-Jones potential withCi j 535 andDi j 55. We as-
cribe to them a heavy massmsolid550mliquid so as to have a
time scale comparable to the liquid. Each layer of atoms
initially fixed on a fcc~100! lattice and these atoms are the
allowed to vibrate around their initial positions with a ha
monic restoring potential.
746 ©1999 The American Physical Society
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FIG. 1. Side view of a drop. The open circles are liquid atoms, the filled circles mark the average position of the interfac
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The temperature of the system is maintained by resca
the velocities of the atoms. We first equilibrate indepe
dently the drop of liquid and the solid. Once we have
equilibrated drop~constant energy!, we move it into the vi-
cinity of the solid and then we maintain the temperature
the solid only. This procedure is used to mimic the therm
exchange between the liquid and the thermalized solid, a
a real experiment. The time stepdt is measured in units o
t5Aem/s2 and its typical value is given bydt50.005t, of
the order of 5310215 s, with e ands defined as before. The
trajectories of the atoms are then computed solving the a
ciated Newton equations withCff5D ff51.0. The system
size we consider in this paper is 25 600 atoms for the liq
~1600 16-atom chains! and 40 000 atoms to represent t
wall. The interaction between the liquid and the solid itsel
modulated by the constantsCfs andD fs . To mimic the exis-
tence of two species in the substrate, we have consid
Cfs5D fs50.5 for some solid atoms andCfs5D fs50.3 for
the others. That is to say, the substrate is constituted by
speciesA, which interacts strongly with the liquid, and an
other speciesB, which interacts weakly. Previous studie
@10# have shown that the interactions of 0.5 and 0.3 lead
equilibrium contact angles of, respectively, 52° and 11
The relative concentrations ofA and B are, respectively,c
and 12c. Intuitively, we may expect that the larger the co
centration ofB, the larger the contact angle. Several config
rations for the distribution of these species may of course
considered: either regularly distributed or, closer to real
periments, randomly distributed. Both cases will be dev
oped below.

III. RESULTS

To compute the associated contact angle, we procee
follows. First, we subdivide the liquid droplet into sever
horizontal layers of arbitrary thickness. The constraint on
number of layers is provided by the need to maximize
number of layers while ensuring that each layer conta
enough molecules to give a uniform density. For each la
we locate its center by symmetry and compute the densit
particles as a function of the distance to the center. We t
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locate the extremity of the layer as the distance where
density falls below a cutoff value of 0.5 times the liqu
density. To check the consistency of the method, differ
layer thicknesses and cutoff values were considered
these gave almost identical results. A typical snapshot of
observed drops is given in Fig. 1~see also@10#!. Using a
circular fit based on the extremities of the layers, we then
measure the contact angleu of the drop versus time. This is
also necessary to determine the corresponding value at e
librium.

Let us first compare the effect of the shape of the patc
of the different species on the results. For that we have c
sidered with the same surface concentration ofA and B,
regular distributions~squares of 131 to 737 atoms!, and
random distributions in the two solid layers. The correspo
ing contact angle relaxations in time do not exhibit any s
nificant differences as observed in Fig. 2. These res
show, in agreement with the results presented earlier@9#, that
the geometry of microscopic patches seems not to pla
significant role in determining the equilibrium contact ang
Presumably the patches are small enough so that the en

FIG. 2. Contact angle relaxation of drops in contact with a h
erogeneous solid (c50.755), with a random distribution~1! and
with square patches~s!.
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required to cross them is comparable tokT.
Let us now present our results for regular patches. T

contact angle relaxations in time for different concentratio
of A andB are given in Fig. 3. To extract from these data t
associated equilibrium angles, we need to fit them us
some theoretical model. It has been shown in@10# that the
molecular kinetic theory~MKT ! can be applied very well for
the pure casesCfs5D fs50.3 and 0.5. Moreover, the param
eters within the MKT can be linked to the molecular pro
erties of the liquid and the solid. It is therefore meaningful
fit these data according to an effective MKT. Within th
approach, Blake and Haynes@11# assumed the driving force
for the wetting line to be the out of balance surface tens
force gLV (cosu02cosu). Using Eyring’s activated rate
theory for transport in liquids gave the final relationship b
tweenu and the velocity of the wetting linev as

v52K0l sinhF gLV

2nkBT
~cosu02cosu!G , ~5!

where K0 is the frequency of molecular displacement
equilibrium,l is the average length of these displacementn
is the number of adsorption sites per unit of area,kB is the
Boltzmann constant, andT is the absolute temperature. N
external forces are present in the simulation and the shap
the spreading drop will approximate a spherical cap@12#. If
we assume no evaporation and a constant volume, whic
indeed observed within the simulations, the following re
tionship can be derived@10#:

v5
]R

]t
52

]u

]t S 3V

p D 1/3 ~12cosu!2

~223 cosu1cos3 u!
4/3, ~6!

whereV is the drop volume andR is the base radius. Thes
equations are a linked set of partial differential equatio
with two adjustable parameters: the prefactora52K0l and
b5gLV/2nkBT. The prefactor is a measure for the intrins
velocity of the solid/liquid system. To keep the results
general as possible, we calculated all the parameters in

FIG. 3. Contact angle versus time. The fitted curves corresp
to the MKT. From bottom to top, we have the following concent
tion of A: 1.0, 0.995, 0.98, 0.875, 0.755, 0.595, 0.245, 0.02,
0.0.
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duced units. Since we do not change the site densityn and
the other parameters inb are independent of the interaction
between the solid and the liquid,b should be the same in a
the experiments. The best fit gaveb50.2160.06 @10#. The
differential equations were solved numerically using
fourth-order Runge-Kutta algorithm@13#. The difference be-
tween the numerical data and the theoretical curve was
minimized with a downhill simplex method@13#. The nu-
merical fitted curves are also shown in Fig. 3. The associa
equilibrium angles versus the concentration ofA are given in
Fig. 4.

To estimate the errors on the parameters, we have app
the bootstrap method@13# using an estimated error of 2.5° o
the measurement of the individual angles. Because, at lo
times, the contact angles of our MD drops fluctuates more
less around a mean value, we conclude that the true equ
rium values are reached. As can be seen, the agreement
Cassie’s law~shown as the straight line! is quite remarkable
for these microscopic heterogeneities.

The associated prefactoraeff resulting from every fit can
then also be plotted versus the concentration ofA. The cor-
responding data are given in Fig. 5. The prefactors on p
substratesaB andaA are the values at, respectively,c50 and
1.

d
-
d

FIG. 4. Equilibrium contact angle as a function of the relati
concentration ofA. The solid line represents Cassie’s law. The c
relation coefficient of the straight line fit is 0.9994.

FIG. 5. Prefactoraeff from fitting the MKT versus the relative
concentration ofA. The solid line represents Eq.~8!.
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The prefactoraeff varies highly nonlinearly with the rela
tive concentrations of the two species present at the s
strate. The effective prefactor~with dimensions of velocity!
for the mixed substrates seems to be constant whenc is close
to 1. Only as the relative concentration ofA approaches 0
does the effect ofB on the effective prefactor become si
nificant. This behavior suggests that the effective dynam
of spreading on heterogeneous substrates is determine
the slowest process (aA) occurring at the contact line. It is
only when the concentration of the rate determining spe
becomes small that the effective prefactor takes an inter
diate value.

Sincea52K0l and in all the simulation thel’s are equal,
we can describe the behavior ofaeff in terms ofKeff

0 . In the
original model of Blake and Haynes@11#, K0 could be seen
as the inverse of the time required to jump from one site
another, including the residence time. On heterogeneous
strates with two constituents, four kinds of jumps may ex
namely,A-A, B-B, A-B, andB-A. It can be expected that
jump from one surface species to another is characterize
different asymmetric energy barriers and thus we may exp
different and asymmetric jump frequencies. The aver
jump time is then the sum of all the individual jump time
respectively multiplied by the probability of their occu
rence. If we assume that the probability of jumps from o
surface species to another can be approximated byc(1
2c), we then find

1

Keff
0 5

c

KA-A
0 1

12c

KB-B
0 1

c~12c!

KA-B
0 1

c~12c!

KB-A
0 . ~7!

If the wettabilities ofA andB are very different, withA the
most wettable species, so thatKA-B

0 !KB-A
0 , and if, to a first

approximation, it can also be expected thatKA-B
0 is of the

order ofKA-A
0 , this equation leads to

1

aeff
5

c~22c!

aA
1

12c

aB
. ~8!

In Fig. 5 this equation is represented by the full line. T
errors are calculated as before. It is clear that the propo
model fits the data very well.

In the general case,KA-B
0 and KB-A

0 should be treated a
fitting parameters. Moreover, it should be clear that the pr
ability of jumps across a given boundary depends on
geometry of the heterogeneities. However, if the heteroge
ities are of microscopic size and they are not ordered in so
special geometries~e.g., stripes!, we expectc(12c) to be a
good approximation. As explained before, no differences
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seen between the contact angle relaxation on substrates
random and regular patches, with fixed relative concen
tion.

Taking a closer look at the equations, it is expected tha
small quantity of heterogeneities of nonwettable species o
wettable surface~c close to 1! will not change the dynamic
parameters significantly; only the driving force of spreadi
will be changed according to Cassie’s law~linear with the
concentration!. On the other hand, a small quantity of we
table species on a nonwettable surface~c small! can drasti-
cally increase the dissipation at the contact line~smalleraeff!.
Since the dissipation at the contact line is the rate determ
ing factor within this approach, small wettable heteroge
ities can significantly decrease the rate of spreading. T
property can be related to the observation that the jump
quency of water on hydrophobic substrates can be order
magnitudes larger than on hydrophobic substrates@7#.

IV. CONCLUSIONS

In conclusion, we have been able to show the validity
Cassie’s law for molecular heterogeneities using MD sim
lations. Moreover, we have shown that, provided the size
the heterogeneities are of molecular scale, their geom
does not change the equilibrium contact angle. The dynam
of the MD drops spreading on heterogeneous substrates
be described by the molecular kinetic theory. The effect
kinetic parameters resulting from these fits change non
early with the relative concentration of the heterogeneiti
In the model proposed for the effective kinetic paramete
we assume different frequencies at the contact line: frequ
cies related to the movement of liquid molecules on patc
that are locally pure and the frequencies related to the cr
ing of boundaries between the different species. This sim
model represents the experimental behavior very well. I
shown that small quantities of wettable heterogeneities
decrease the jump frequency of wetting drastically.

To our knowledge, no experimental results on the eff
of heterogeneities on contact angle relaxation have been
lished. However, intuitively, it can be understood that h
erogeneities must influence the dynamics to a large ext
We hope these MD studies are a step towards a better un
standing of the dynamics of spreading on heterogeneous
rough substrates.
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